Два датчика холла на Arduino UNO

Нет ответов
intruder400
Offline
Зарегистрирован: 27.01.2016

Всем добрый вечер!

Я недавно начал работать с ардуино. Хочу сделать дозатор воды с помощью магнитного клапана и счетчика потока жидкости (датчик холла). Нашел работающий скетч который измеряет и выводит на COM порт: скорость потока воды, количество воды в итоге. Разобрался как управлять реле при нужных значениях. Далее решил расширить код для считывания данных с двух датчиков (в идеале нужно 4, но видимо придется покупать Мегу). Тут начались проблемы:

1) Теперь работает только второй датчик, который висит на PIN 3. Первый не подает признаков жизни. 

2) В окне КОМ порта все очень и очень быстро обновляется. Не успеваю прочитать.

Подскажите, плз, как это исправить.


byte statusLed    = 13; // Pokazivaet chto vse rabotaet

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2; // Podkluchaem datchik holla
byte sensorInterrupt2 = 1;  // 1 = digital pin 3
byte sensorPin2       = 3; // Podkluchaem datchik holla 2
int LED_OK          = 5; 
int buttonStart     = 4; // Knopka nachala processa Posle zasipaniya dereva
int relay_s         = 6; // RELE podachi sulfata

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;
float calibrationFactor2 = 4.5;

volatile byte pulseCount;
volatile byte pulseCount2;

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

float flowRate2;
unsigned int flowMilliLitres2;
unsigned long totalMilliLitres2;

unsigned long oldTime2;

void setup()
{
  
  // Initialize a serial connection for reporting values to the host
  Serial.begin(9600);
   
  // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);
  
  pinMode(sensorPin2, INPUT);
  digitalWrite(sensorPin2, HIGH);
  
  pinMode(LED_OK, OUTPUT);
  digitalWrite(LED_OK, LOW);
  
  pinMode(buttonStart, INPUT);
  
  pinMode(relay_s, OUTPUT);
  
  

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;
  
  pulseCount2        = 0;
  flowRate2          = 0.0;
  flowMilliLitres2   = 0;
  totalMilliLitres2  = 0;
  oldTime2           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
    attachInterrupt(sensorInterrupt2, pulseCounter2, FALLING);
}

/**
 * Main program loop
 */
void loop()
{
   
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  
    if((millis() - oldTime2) > 1000)
  
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
    detachInterrupt(sensorInterrupt2);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    flowRate2 = ((1000.0 / (millis() - oldTime2)) * pulseCount2) / calibrationFactor2;
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    oldTime2 = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    flowMilliLitres2 = (flowRate2 / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
    totalMilliLitres2 += flowMilliLitres2;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
    Serial.print("Flow rate: ");
    Serial.print(int(flowRate));  // Print the integer part of the variable
    Serial.print(".");             // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac = (flowRate - int(flowRate)) * 10;
    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
    Serial.print("L/min");
    // Print the number of litres flowed in this second
    Serial.print("  Current Liquid Flowing: ");             // Output separator
    Serial.print(flowMilliLitres);
    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("  Output Liquid Quantity: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 
    
        unsigned int frac2;
    
    // Print the flow rate for this second in litres / minute
    Serial.print("Flow rate2: ");
    Serial.print(int(flowRate2));  // Print the integer part of the variable
    Serial.print(".");             // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac2 = (flowRate2 - int(flowRate2)) * 10;
    Serial.print(frac2, DEC) ;      // Print the fractional part of the variable
    Serial.print("L/min");
    // Print the number of litres flowed in this second
    Serial.print("  Current Liquid Flowing2: ");             // Output separator
    Serial.print(flowMilliLitres2);
    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("  Output Liquid Quantity2: ");             // Output separator
    Serial.print(totalMilliLitres2);
    Serial.println("mL"); 

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
     pulseCount2 = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
    attachInterrupt(sensorInterrupt2, pulseCounter2, FALLING);
    
    if (digitalRead(buttonStart) == HIGH)
    { 
      totalMilliLitres = 0;
      digitalWrite(relay_s, HIGH);
    }
    
    if (totalMilliLitres >= 2000)
    {
    totalMilliLitres = 0;
   digitalWrite(LED_OK, HIGH);
   digitalWrite(relay_s, LOW); 
  }
  
}

/*
Insterrupt Service Routine
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;
}
void pulseCounter2()
{
  // Increment the pulse counter
  pulseCount2++;
}