Не отрабатывает код
- Войдите на сайт для отправки комментариев
Ср, 22/03/2017 - 13:38
Здравствуйте! Помогите пожалуйста.
Есть код:
int stage=0; int start=0; // I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files // for both classes must be in the include path of your project #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" //#include "MPU6050.h" // not necessary if using MotionApps include file // Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation // is used in I2Cdev.h #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE #include "Wire.h" #endif // class default I2C address is 0x68 // specific I2C addresses may be passed as a parameter here // AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board) // AD0 high = 0x69 MPU6050 mpu; //MPU6050 mpu(0x69); // <-- use for AD0 high /* ========================================================================= NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch depends on the MPU-6050's INT pin being connected to the Arduino's external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is digital I/O pin 2. * ========================================================================= */ /* ========================================================================= NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error when using Serial.write(buf, len). The Teapot output uses this method. The solution requires a modification to the Arduino USBAPI.h file, which is fortunately simple, but annoying. This will be fixed in the next IDE release. For more info, see these links: http://arduino.cc/forum/index.php/topic,109987.0.html http://code.google.com/p/arduino/issues/detail?id=958 * ========================================================================= */ // uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual // quaternion components in a [w, x, y, z] format (not best for parsing // on a remote host such as Processing or something though) //#define OUTPUT_READABLE_QUATERNION // uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles // (in degrees) calculated from the quaternions coming from the FIFO. // Note that Euler angles suffer from gimbal lock (for more info, see // http://en.wikipedia.org/wiki/Gimbal_lock) //#define OUTPUT_READABLE_EULER // uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/ // pitch/roll angles (in degrees) calculated from the quaternions coming // from the FIFO. Note this also requires gravity vector calculations. // Also note that yaw/pitch/roll angles suffer from gimbal lock (for // more info, see: http://en.wikipedia.org/wiki/Gimbal_lock) #define OUTPUT_READABLE_YAWPITCHROLL // uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration // components with gravity removed. This acceleration reference frame is // not compensated for orientation, so +X is always +X according to the // sensor, just without the effects of gravity. If you want acceleration // compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead. #define OUTPUT_READABLE_REALACCEL // uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration // components with gravity removed and adjusted for the world frame of // reference (yaw is relative to initial orientation, since no magnetometer // is present in this case). Could be quite handy in some cases. //#define OUTPUT_READABLE_WORLDACCEL // uncomment "OUTPUT_TEAPOT" if you want output that matches the // format used for the InvenSense teapot demo //#define OUTPUT_TEAPOT #define INTERRUPT_PIN 2 // use pin 2 on Arduino Uno & most boards #define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) bool blinkState = false; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer // orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorInt16 aa; // [x, y, z] accel sensor measurements VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements VectorFloat gravity; // [x, y, z] gravity vector float euler[3]; // [psi, theta, phi] Euler angle container float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector // packet structure for InvenSense teapot demo uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' }; // ================================================================ // === INTERRUPT DETECTION ROUTINE === // ================================================================ volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } // ================================================================ // === INITIAL SETUP === // ================================================================ void setup() { // join I2C bus (I2Cdev library doesn't do this automatically) #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE Wire.begin(); Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE Fastwire::setup(400, true); #endif // initialize serial communication // (115200 chosen because it is required for Teapot Demo output, but it's // really up to you depending on your project) Serial.begin(9600); while (!Serial); // wait for Leonardo enumeration, others continue immediately // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to // the baud timing being too misaligned with processor ticks. You must use // 38400 or slower in these cases, or use some kind of external separate // crystal solution for the UART timer. // initialize device Serial.println(F("Initializing I2C devices...")); mpu.initialize(); pinMode(INTERRUPT_PIN, INPUT); // verify connection Serial.println(F("Testing device connections...")); Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed")); // // wait for ready // Serial.println(F("\nSend any character to begin DMP programming and demo: ")); // while (Serial.available() && Serial.read()); // empty buffer // while (!Serial.available()); // wait for data // while (Serial.available() && Serial.read()); // empty buffer again // load and configure the DMP Serial.println(F("Initializing DMP...")); devStatus = mpu.dmpInitialize(); // supply your own gyro offsets here, scaled for min sensitivity mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1788); // 1688 factory default for my test chip // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it's ready Serial.println(F("Enabling DMP...")); mpu.setDMPEnabled(true); // enable Arduino interrupt detection Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it's okay to use it Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } // configure LED for output pinMode(LED_PIN, OUTPUT); pinMode(6, OUTPUT); pinMode(7, OUTPUT); pinMode(8, OUTPUT); pinMode(9, OUTPUT); digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); Serial.println(F("Prepare for deployment")); delay(1000); // } // ================================================================ // === MAIN PROGRAM LOOP === // ================================================================ void loop() { // if programming failed, don't try to do anything if (!dmpReady) return; // wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { if (stage==0 && start>0) { digitalWrite(6, HIGH); digitalWrite(7, HIGH); digitalWrite(8, HIGH); digitalWrite(9, HIGH); if (aaReal.z>1600 || aaReal.z<150) // здесь экспериментально надо подобрать значения сравнения для ускорения по оси Z { // пока опускаются поршни должна успеть произойти калибровка датчика (секунд 30-60 нужно на это) digitalWrite(6, LOW); // нужно чтобы цилиндпы выдвигались не очень быстро, плавно и останавливались четкоа по сигналу (его отсутствию) digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage=4; start=0; Serial.println(F("Supports Ready")); delay(2000); } } if (stage==4 && start>0) // ось Х { if (ypr[2] * 180/M_PI < 0) { digitalWrite(6, LOW); digitalWrite(9, LOW); digitalWrite(7, HIGH); digitalWrite(8, HIGH); } if (ypr[2] * 180/M_PI > 0) { digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(6, HIGH); digitalWrite(9, HIGH); } if (ypr[2] * 180/M_PI < 0.50 && ypr[2] * 180/M_PI > -0.50) // для уравновешивания осей экспериментально подобрать оптимальный промежуток для нуля (четко нуля добиться нереально, поэтому нужно учитывать отклонения допустимые +- 0,5 град здесь) { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage=5; start=0; Serial.println(F("X leveling Ready")); delay(2000); } } if (stage==5 && start>0) // ось У { if (ypr[1] * 180/M_PI < 0) { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, HIGH); digitalWrite(9, HIGH); } if (ypr[1] * 180/M_PI > 0) { digitalWrite(8, LOW); digitalWrite(9, LOW); digitalWrite(6, HIGH); digitalWrite(7, HIGH); } if (ypr[1] * 180/M_PI < 0.50 && ypr[1] * 180/M_PI > -0.50) // аналогично для этой оси { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage=6; start=0; Serial.println(F("Y leveling Ready")); Serial.println(F("Leveling complete!")); delay(2000); } } } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); // Serial.println(F("FIFO overflow!")); // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; #ifdef OUTPUT_READABLE_YAWPITCHROLL // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); // Serial.print("ypr\t"); // Serial.print(ypr[0] * 180/M_PI); // Serial.print("\t"); // Serial.print(ypr[1] * 180/M_PI); // Serial.print("\t"); // Serial.println(ypr[2] * 180/M_PI); #endif #ifdef OUTPUT_READABLE_REALACCEL // display real acceleration, adjusted to remove gravity mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); // Serial.print("areal\t"); // Serial.print(aaReal.x); // Serial.print("\t"); // Serial.print(aaReal.y); // Serial.print("\t"); // Serial.println(aaReal.z); #endif if (stage==6){ Serial.print("ypr\t"); Serial.print(ypr[0] * 180/M_PI); Serial.print("\t"); Serial.print(ypr[1] * 180/M_PI); Serial.print("\t"); Serial.println(ypr[2] * 180/M_PI); } // blink LED to indicate activity blinkState = !blinkState; digitalWrite(LED_PIN, blinkState); start++; } }
Отрабатывает полностью, но когда я хочу сделать его как подпрограмму, он не работает, может кто подскажет, что я делаю не так?
#include <SoftwareSerial.h> #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" int stage = 0; int start = 1; int star = 0; int b_1; int b_2; int b_3; int b_4; int b_5; int b_6; int b_7; int b_8; SoftwareSerial Serial100(11, 12); #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE #include "Wire.h" #endif MPU6050 mpu; #define OUTPUT_READABLE_YAWPITCHROLL #define OUTPUT_READABLE_REALACCEL #define INTERRUPT_PIN 2 // use pin 2 on Arduino Uno & most boards #define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) bool blinkState = false; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer // orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorInt16 aa; // [x, y, z] accel sensor measurements VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements VectorFloat gravity; // [x, y, z] gravity vector float euler[3]; // [psi, theta, phi] Euler angle container float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector uint8_t teapotPacket[14] = { '$', 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, '\r', '\n' }; volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } void setup() { #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE Wire.begin(); Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE Fastwire::setup(400, true); #endif Serial100.begin(9600); Serial.begin(9600); while (!Serial); Serial.println(F("Initializing I2C devices...")); mpu.initialize(); pinMode(INTERRUPT_PIN, INPUT); Serial.println(F("Testing device connections...")); Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed")); Serial.println(F("Initializing DMP...")); devStatus = mpu.dmpInitialize(); mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1788); // 1688 factory default for my test chip if (devStatus == 0) { Serial.println(F("Enabling DMP...")); mpu.setDMPEnabled(true); Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true; packetSize = mpu.dmpGetFIFOPacketSize(); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } pinMode(LED_PIN, OUTPUT); pinMode(6, OUTPUT); pinMode(7, OUTPUT); pinMode(8, OUTPUT); pinMode(9, OUTPUT); digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); Serial.println(F("Prepare for deployment")); delay(1000); // } void loop() { if (Serial100.available()) { //если получили данные по bluetooth b_1 = Serial100.read(); //читаем первый байт данных while (!Serial100.available());//ожидаем следующий байт b_2 = Serial100.read(); //читаем второй байт данных while (!Serial100.available());//ожидаем следующий байт b_3 = Serial100.read(); //читаем третий байт данных while (!Serial100.available());//ожидаем следующий байт b_4 = Serial100.read(); //читаем третий байт данных while (!Serial100.available());//ожидаем следующий байт b_5 = Serial100.read(); //читаем третий байт данных while (!Serial100.available());//ожидаем следующий байт b_6 = Serial100.read(); //читаем третий байт данных while (!Serial100.available());//ожидаем следующий байт b_7 = Serial100.read(); //читаем третий байт данных while (!Serial100.available());//ожидаем следующий байт b_8 = Serial100.read(); //читаем третий байт данных Serial100.flush();//очищаем буфер, т.к. больше ничего мы не передаем if (b_6 == 1) { digitalWrite(6, HIGH); digitalWrite(7, HIGH); digitalWrite(8, HIGH); digitalWrite(9, HIGH); } else if (b_6 == 2) { // if (star == 0) { gyr(); // star++; // } } else { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); } } } void gyr() { if (!dmpReady) return; while (!mpuInterrupt && fifoCount < packetSize) { if (stage == 0 && start > 0) { digitalWrite(6, HIGH); digitalWrite(7, HIGH); digitalWrite(8, HIGH); digitalWrite(9, HIGH); if (aaReal.z > 1600 || aaReal.z < 150) // здесь экспериментально надо подобрать значения сравнения для ускорения по оси Z { // пока опускаются поршни должна успеть произойти калибровка датчика (секунд 30-60 нужно на это) digitalWrite(6, LOW); // нужно чтобы цилиндпы выдвигались не очень быстро, плавно и останавливались четкоа по сигналу (его отсутствию) digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage = 4; start = 0; Serial.println(F("Supports Ready")); delay(2000); } } if (stage == 4 && start > 0) // ось Х { if (ypr[2] * 180 / M_PI < 0) { digitalWrite(6, LOW); digitalWrite(9, LOW); digitalWrite(7, HIGH); digitalWrite(8, HIGH); } if (ypr[2] * 180 / M_PI > 0) { digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(6, HIGH); digitalWrite(9, HIGH); } if (ypr[2] * 180 / M_PI < 0.50 && ypr[2] * 180 / M_PI > -0.50) // для уравновешивания осей экспериментально подобрать оптимальный промежуток для нуля (четко нуля добиться нереально, поэтому нужно учитывать отклонения допустимые +- 0,5 град здесь) { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage = 5; start = 0; Serial.println(F("X leveling Ready")); delay(2000); } } if (stage == 5 && start > 0) // ось У { if (ypr[1] * 180 / M_PI < 0) { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, HIGH); digitalWrite(9, HIGH); } if (ypr[1] * 180 / M_PI > 0) { digitalWrite(8, LOW); digitalWrite(9, LOW); digitalWrite(6, HIGH); digitalWrite(7, HIGH); } if (ypr[1] * 180 / M_PI < 0.50 && ypr[1] * 180 / M_PI > -0.50) // аналогично для этой оси { digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(8, LOW); digitalWrite(9, LOW); stage = 6; start = 0; Serial.println(F("Y leveling Ready")); Serial.println(F("Leveling complete!")); delay(2000); } } } mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); fifoCount = mpu.getFIFOCount(); if ((mpuIntStatus & 0x10) || fifoCount == 1024) { mpu.resetFIFO(); } else if (mpuIntStatus & 0x02) { while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); mpu.getFIFOBytes(fifoBuffer, packetSize); fifoCount -= packetSize; #ifdef OUTPUT_READABLE_YAWPITCHROLL // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); #endif #ifdef OUTPUT_READABLE_REALACCEL // display real acceleration, adjusted to remove gravity mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); #endif if (stage == 6) { Serial.print("ypr\t"); Serial.print(ypr[0] * 180 / M_PI); Serial.print("\t"); Serial.print(ypr[1] * 180 / M_PI); Serial.print("\t"); Serial.println(ypr[2] * 180 / M_PI); } // blink LED to indicate activity blinkState = !blinkState; digitalWrite(LED_PIN, blinkState); start++; } }