Button matrix - кнопочный матрикс - принцип действия

Dmitrij
Offline
Зарегистрирован: 16.06.2017

Добрый день!

Я прошу не закидывать тапками, ибо я нов в мире дуни!

У меня вопрос такой:

Каков принцип действия кнопочного матрикса из 16 кнопок, если отводов от него всего восемь (8)?

То есть: Как дуня распознаёт, на какую кнопку нажали? У каждой кнопки какой-то электронный идентификатор? Если да, какой?

Вот ссылка на кнопочный матрикс, о котором я спрашиваю:

http://www.conrad.de/de/raspberry-pi-erweiterungs-platine-gruen-sbc-buttonmatrix-raspberry-pi-raspberry-pi-2-b-raspberry-pi-3-b-raspberry-1503751.html

Клапауций 112
Клапауций 112 аватар
Offline
Зарегистрирован: 01.03.2017
Dmitrij
Offline
Зарегистрирован: 16.06.2017

Клапауций 112 пишет:

#393

Клапауций, я посмотрел по ссылке в #393, но ответа на свой вопрос я там не нашёл.

Дело в том, что написать код для использования матрикса я смог бы и вопрос не в этом.

Вопрос в том, что восемью проводами - как в аналоговой электрике - можно подключить только семь кнопок: 1 контакт подводящий и 7 отводящих контактов.

Вот поэтому я и задаю вопрос:

как в этом кнопочном матриксе идентифицируются 16 кнопок, при том, контактов всего 8 (восемь) ?

Condensator
Offline
Зарегистрирован: 02.06.2017

Dmitrij пишет:
как в этом кнопочном матриксе идентифицируются 16 кнопок, при том, контактов всего 8 (восемь) ?
Замыканием контакта на пересечении матрицы:   x[0]...x[3] и y[0]...y[3]

strarbit
Offline
Зарегистрирован: 12.06.2016
Dmitrij
Offline
Зарегистрирован: 16.06.2017

strarbit, спасибо, я туда раньше смотрел и не смог разобратья :)

Condensator пишет:

Dmitrij пишет:
как в этом кнопочном матриксе идентифицируются 16 кнопок, при том, контактов всего 8 (восемь) ?
Замыканием контакта на пересечении матрицы:   x[0]...x[3] и y[0]...y[3]

Condensator, спасибо за ответ :)

Несколько мгновений назад я разобрался по картинке, которую под словами "Подключаем клавиатуру в любые порты ввода/вывода." можно засмотреть вот по этой ссылке:http://robots4life.ru/arduino-keypad .

 

Клапауций 112
Клапауций 112 аватар
Offline
Зарегистрирован: 01.03.2017

Dmitrij пишет:

Несколько мгновений назад я разобрался по картинке, которую под словами "Подключаем клавиатуру в любые порты ввода/вывода." можно засмотреть вот по этой ссылке:http://robots4life.ru/arduino-keypad .

сюда #370 посмотреть - аллах запретил?

andriano
andriano аватар
Offline
Зарегистрирован: 20.06.2015

Dmitrij, не матрикс, а матрица. Вспомните из школьного курса, что называется матрицкй - легче будет понять.

Ну или с другой стороны не 1 контакт подводящий и 7 отводящих, а 4 подводящих и 4 отводящих.

Dmitrij
Offline
Зарегистрирован: 16.06.2017

andriano пишет:

Dmitrij, не матрикс, а матрица. Вспомните из школьного курса, что называется матрицкй - легче будет понять.

Ну или с другой стороны не 1 контакт подводящий и 7 отводящих, а 4 подводящих и 4 отводящих.

Спасибо ж Вам за поправку!

Когда задавал вопрос мне было как-то всё равно, матрикс или матрица :) Главное было понять, что за чудо такое.

Ну а на самом деле срисовал я это слово с "нерусского" ресурса (посмотрите по ссылке) - оттуда матрикс.

А школьная матрица к заданному вопросу отношения не имеет.

Lackman
Offline
Зарегистрирован: 24.06.2017

Dmitrij пишет:
Ну а на самом деле срисовал я это слово с "нерусского" ресурса (посмотрите по ссылке) - оттуда матрикс. А школьная матрица к заданному вопросу отношения не имеет.

Ага, не имеет. Это она и есть

Матричный выигрыш , те отношение Z=количества кнопок ( те пересечений столбцов  и строк матрицы) к сумме количества  строк (Х)  + столбцов (Y) проявляется только если (X+Y>5)  & (X>=2) & (Y>=2)

Те для 4 кнопок нужно с мультиплексированием матрицей или без нее 2х2=2+2=4  линии  и выигрыш=4/4=1  то есть его нет.

для матрицы 7х1 7 кнопок на 7+1 линий, выигрыш 7/8  тк он меньше 1, то это проигрыш

andriano
andriano аватар
Offline
Зарегистрирован: 20.06.2015

1. Непонимание зачастую начинается именно с перевранного перевода.

2. Не бывает матриц "школьных" и каких-либо других.

3. Если бы не имело отношения, я бы не писал. Не помните школьный курс - загляните в Википедию.

 

Dmitrij
Offline
Зарегистрирован: 16.06.2017

Удачи Вам!